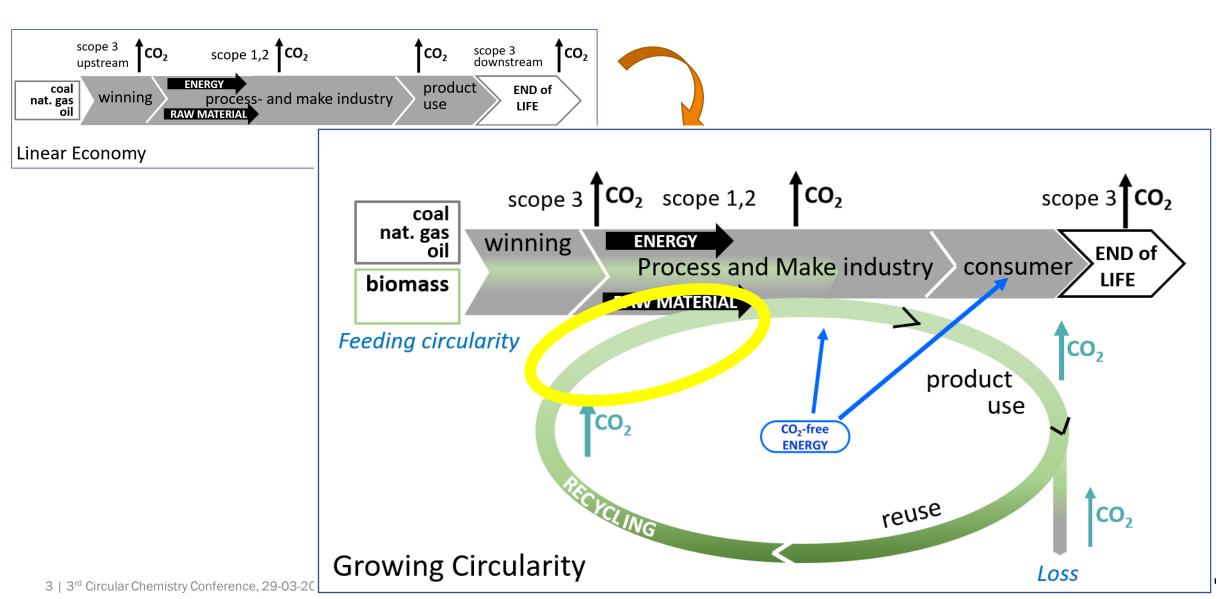


Brightsite Transforming industry


provincie limburg

Brightsite: Upscaling initiative

LINEAR TO CIRCULAR

THE CIRCULAR FEEDSTOCK GAP

Quality

Mechanical Recycling

- > Glues
- Dyes/Inks
- > Labels
- > Etc.

Clean e.g. DKR 310

Rests e.g. DKR 350

> Thermo Chemical Recycling

- Oxygen
- ➤ Nitrogen
- > Chloride
- > Sulfur
- > Etc.

Amount and quality

UPWASH PROCESS

- > The Upwash Process is a hydrothermal concept process.
- > Treatment of mixed plastic waste particles (shredded MPW fractions) with heated water under pressure at prolonged residence times (ca 30min).
- > Derived from Torwash® developed by TNO (ECN) as a biomass waste upgrade technology.
- ➤ Upwash is targeting <u>mixed plastic wastes</u> to further separate plastic types and improve quality of process product streams to better suit mechanical and thermochemical recycling and plastics circularity.
- > No other additional chemicals are involved in this pre-treatment process.

PLASTIC WASTE FEEDSTOCK (E.G. DKR310)

Product Specification 08/2014 Fraction-No. 310-1

Sorting fraction:

PLASTIC FILMS

A Specification/Description

Used, residue-drained, system-compatible items made of plastic film, surface > DIN A4, e.g. bags, carrier bags and shrink-wrapping film, incl. secondary components such as labels etc.

The supplement is part of this specification!

B Purity

At least 92 % by mass according to specification/description.

At least 42 % colourless, transparent films > DIN A 3

C Impurities

Max. total amount of impurities

8 % by mass

Metallic and mineral impurities with a unit weight of > 100 g are not permitted!

Other metal items < 0.5 % by mass

Other plastic items

< 4 % by mass

Paper, cardboard, carton

< 1 % by mass

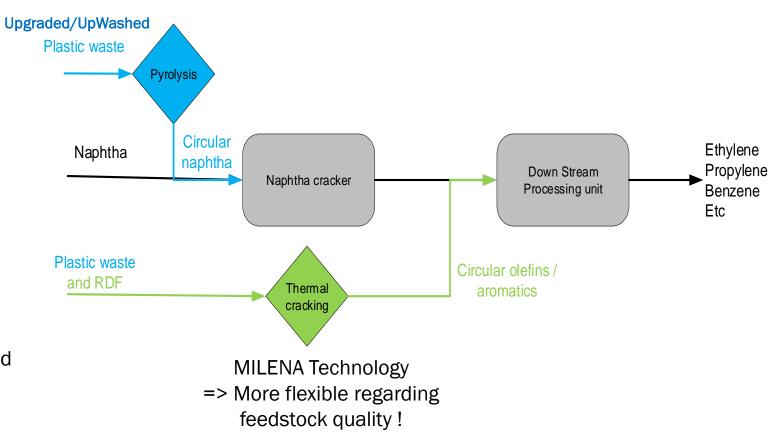
Other residues

< 4 % by mass

Examples of impurities:

- Glace
- Composite paper/cardboard materials (e.g. liquid packaging boards)
- Aluminised plastics
- Other materials (e.g. rubber, stones, wood, textiles, nappies)
- Compostable waste (e.g. food, garden waste)

Pre-processing <u>needed</u> even at industrial scale !!!



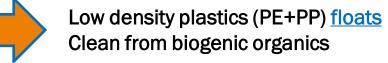
CRACKING OF PLASTIC WASTES

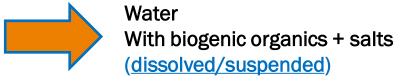
- Circular naphtha being produced from <u>"clean"</u> plastic waste streams via pyrolysis
 - Solution? => Upgrading de plastic waste (UpWash)!
- Circular olefins/aromatics produced from plastic waste streams via thermal cracking
-) <u>Biobased</u> olefins/aromatics produced from RDF streams via MILENA/thermal cracking

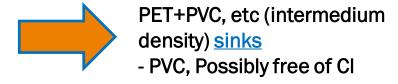
-) Both routes need to be further developed, improved and implemented
- Both routes will face a large challenge in matching the naphtha demand

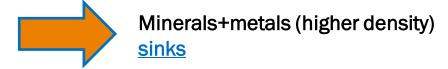
<u>UPWASH general concept</u>:

Hydrothermal treatment/upgrading for mixed plastic wastes (MPW)

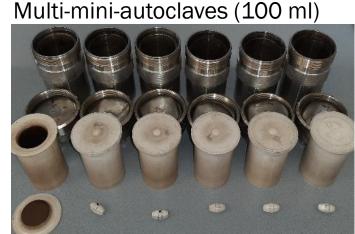

e.g., DKR-310

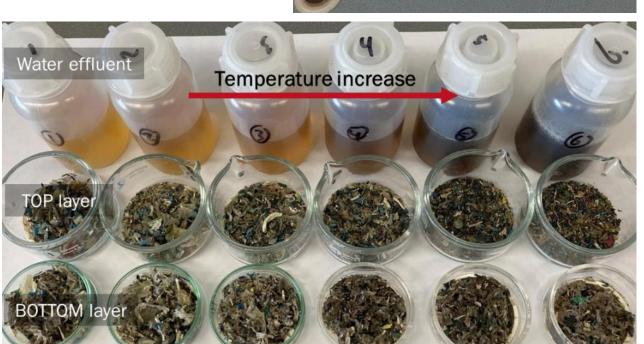



Water + temp + pressure



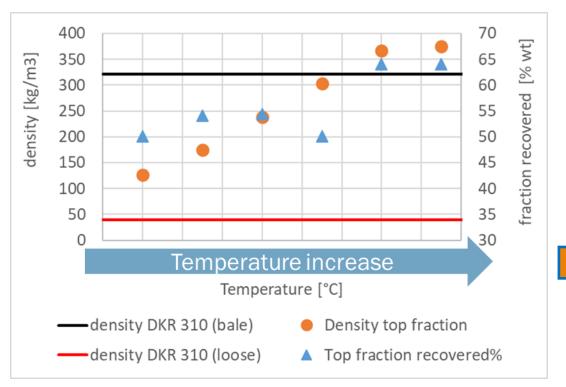
Optimum separation:



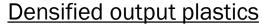

innovation for life

<u>INPUT</u>: mixed plastic waste + H20

Lab-scale screening experiments


Final <u>OUTPUT</u> products:

- ➤ Water + biogenic organics
- ➤ Top fraction (e.g. PE+PP)
- ➤ Bottom fraction (e.g. PET+PS+PVC, inerts)



Lab-scale screening experiments

Fluffy input plastics

<u>Temperature increase:</u>

- ➤ More top fraction recovered 60-65% (PE+PP)
- density top fraction increases 350-400 kg/m³

Note: density is given for loose bulk material - relevant for post-process feeding/handling

Bench-scale production experiments **INPUT**

DKR-310 (milled < 20 mm)

DKR-310 (shredded < 100 mm)

Bench-scale OUTPUT

e.g. DKR-310

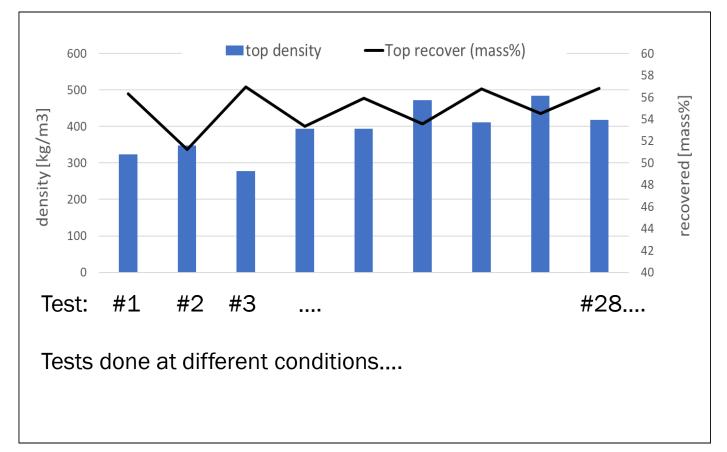
TOP FRACTION

BOTTOM FRACTION

LIQUID FRACTION

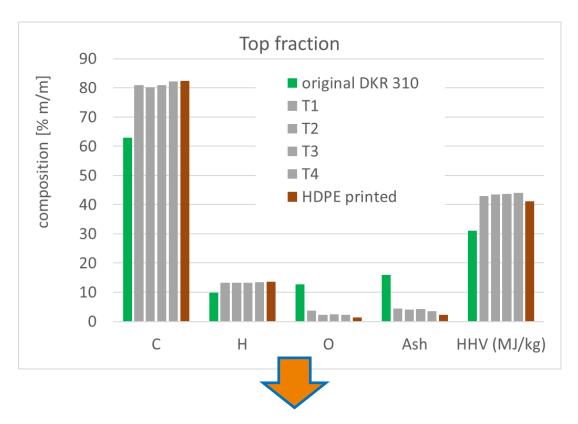
Bench-scale OUTPUT

TOP FRACTION OUTPUT GRANULES (PE+PP) e.g., DKR-310

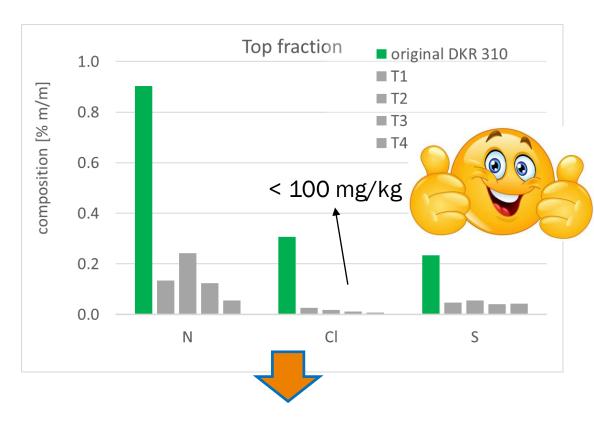


Output size can be changed depending on the applied conditions

Bench-scale OUTPUT analysis results



It is possible to recover about 50%mass of DKR-310 as polyolefins (PE+PP) – (top recover); It is possible to separate the bottom plastics fraction from the inerts and suspended/dissolved biogenics



Bench-scale OUTPUT analysis results

<u>Treated DKR-310 top fractions:</u>

- > C, H, HHV increases to contents similar to PE/PP
- > 0, ash decreases to contents similar to PE/PP

<u>Treated DKR-310 top fraction:</u>

N, Cl and S - decreases significantly (by a factor of 10)

Bench-scale mixed plastic waste **INPUT**: DKR-350

DKR-350

DKR-350 (shredded < 100 mm)

DKR-350 (milled < 20 mm)

Bench-scale mixed plastic waste [DKR-350] OUTPUT: separated plastics and biogenics

TOP Layer granules

BOTTOM Layer free of biogenics

Bottom Layer - biogenics

After treatment:

- Glass and stones easier to separate

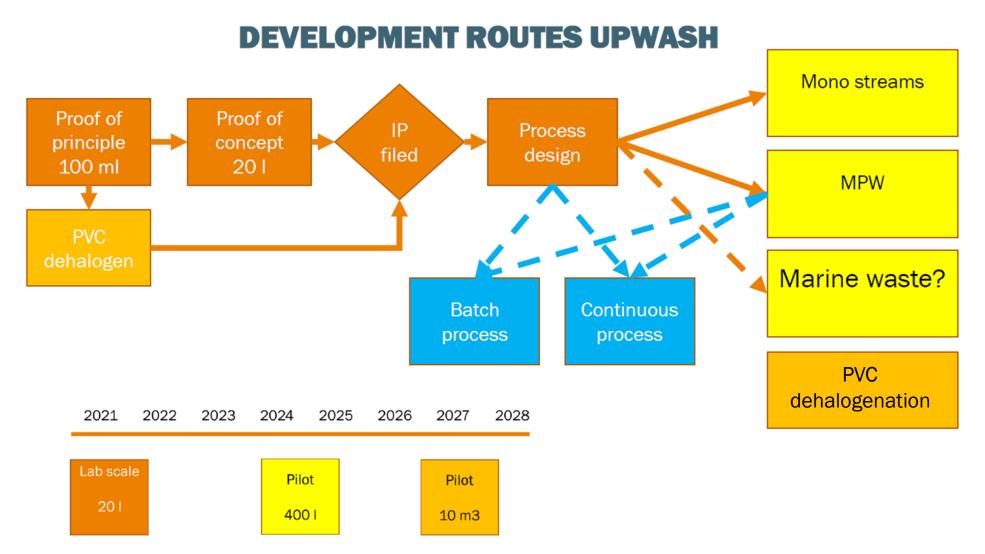
After treatment:

Metals easier to separate

Bench-scale OUTPUT analysis results

WATER EFFLUENT DIGESTION TESTS

	COD_tot	рН	Conductivity	biogas	CH_4	CH_4/COD_{tot}	$1-COD_{final}/COD_{tot}$
DKR-310	(mg/l)	(-)	(mS/cm)	(nm3/ton)	(% vol)	eff. (%wt)	eff. (%wt)
Test#1	5335	6.13	2.24	1.6	59.0	51.2	59.5
Test#2	6011	6.25	2.47	1.7	60.8	49.5	55.9
Test#3	6931	6.25	2.56	1.7	64.1	45.9	53.9
DKR-350 Test#1	11268	4.61	2.52	3.7	54.8	51.7	58.1
DKR-310 Effluent re-use 3x							
concentrated	23900	6.1	8.2	5.5	79.4	50.6	54.2
DKR-310 Effluent re-use 8x							
concentrated	40100	6.1	17.1	9.8	74.1	52.9	56.7



- Not toxic for anaerobic digestion bacteria
- Can be used to produce biogas (1.6-9.8 m^3 /ton with 55-79% CH_4)
- About 60-55% COD conversion

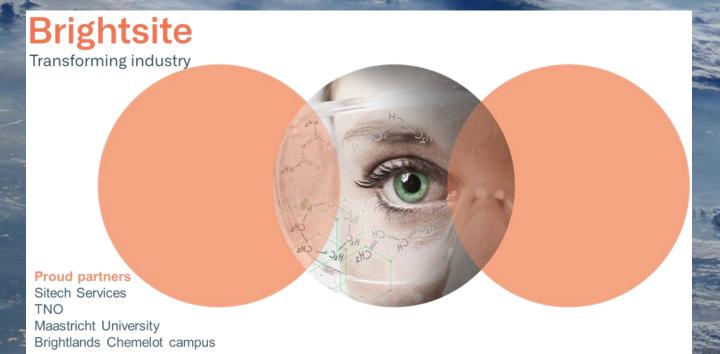
SCALING-UP...

CONCLUSIONS

- **)** UPWASH tests with **mixed plastic wastes**:
 - Top fraction composition similar to PE/PP (> 99% purity, polymer based)
 - increased density => better handling properties;
 - o cleaned plastic granulates, **suitable for application to naphtha crackers** (low Cl and S contents!)
 - cleaned plastic granulates, suitable for mechanical recycling (under research, see photos below)

Easy removal of contaminants such as metal, glass, stones, sand, etc.

CONCLUSIONS


- **)** Bench-scale tests with <u>mixed plastic wastes</u>:
 - <u>Bottom fraction increased density</u> => better handling properties;
 - Plastics bottom fraction is suitable for gasification; low CI (< 0.02%) and S (< 0.1%) contents!!!)
 - Suspended fraction biogenics => possible to separate the biogenic solids from high density plastics; also suitable for gasification
 -) <u>Water effluent</u> easy to treat by digestion => 60-55% COD conversion to biogas (1.6-9.8 m³/ton with 55-65% CH₄)

Research still focused on [e.g. Brightsite, SyschemiQ and INREP]:

- Pigments and glues separation/recover still needs further research
- Other types of plastic wastes
- Scaling-up

THANK YOU FOR YOUR TIME

Contacts:

- Pedro Abelha [Project Manager] pedro.abelha@tno.nl
- Rinke Altink [Program Manager Renewable Feedstocks Brightsite] rinke.altink@tno.nl

innovation for life